BUS 308 Week 4 Assignment

BUS 308 wk 4 assignment

Save your time - order a paper!

Get your paper written from scratch within the tight deadline. Our service is a reliable solution to all your troubles. Place an order on any task and we will take care of it. You won’t have to worry about the quality and deadlines

Order Paper Now
Week 4 Confidence
Intervals and Chi Square  (Chs 11 – 12)
  Let’s look at some other factors that might
influence pay.
<Note:
use right click on row numbers to insert rows to perform analysis below any
question>
For
question 3 below, be sure to list the null and alternate hypothesis
statements.  Use .05 for your
significance level in making your decisions.
 
For
full credit, you need to also show the statistical outcomes – either the
Excel test result or the calculations you performed.
 
 
1 One question we might
have is if the distribution of 
graduate and undergraduate degrees independent of the grade the
employee?
 
(Note: this is the same
as asking if the degrees are distributed the same way.)
 
Based on the analysis of
our sample data (shown below), what is your answer?
         
Ho: The populaton
correlation between grade and degree is 0.
 
Ha: The population
correlation between grade and degree is > 0
 
Perform analysis:  
OBSERVED A B C D E F Total  
COUNT – M or 0 7 5 3 2 5 3 25  
COUNT – F or 1 8 2 2 3 7 3 25  
total 15 7 5 5 12 6 50  
EXPECTED  
7.5 3.5 2.5 2.5 6 3 25 <Highlighting each
cell with show how the value
7.5 3.5 2.5 2.5 6 3 25 is found: row total times
column total divided by
15 7 5 5 12 6 50 grand total.>
 
By using either the
Excel Chi Square functions or calculating the results directly as the text
shows, do we
 
reject or not reject the
null hypothesis?  What does your
conclusion mean?
 
Interpretation:  
 
2 Using our sample data,
we can construct a 95% confidence interval for the population’s mean salary
for each gender.
 
Interpret the
results.  How do they compare with the
findings in the week 2 one sample t-test outcomes (Question 1)?
 
Males Mean St error Low to High  
52 3.65878 44.4483 59.5517 Results are mean
+/-2.064*standard error
Females 38 3.62275 30.5226 45.4774 2.064 is t value for 95%
interval
<Reminder: standard
error is the sample standard deviation divided by the square root of the
sample size.>
 
Interpretation:  
 
 
3 Based on our sample
data, can we conclude that males and females are distributed across grades in
a similar pattern within the population?
 
 
4 Using our sample data,
construct a 95% confidence interval for the population’s mean service
difference for each gender.
 
Do they intersect or
overlap?  How do these results compare
to the findings in week 2, question 2?
 
 
5 How do you interpret
these results in light of our question about equal pay for equal work?